Baolei
profile photo

Baolei Liu

Currently, I am a Postdoctoral Research Fellow in School of Physics, Beihang University (BUAA). I got a PhD degree from University of Technology Sydney, supervised by Dr. Fan Wang and Prof. David McGloin. My main research interests are in Nanophotonics, computational optical imaging and microscopy, including Super-resolution Imaging, Single-pixel imaging, Wavefront Shaping, Scattering Imaging and Novel Imaging Methods. Innovation in this area would finds applications in bio-medical research, which often operates right at the limit of current technology.

Email  /  Google Scholar  /  Google Scholar 2  /  Researchgate  /  ORCID  /  Twitter

News

  • 11/2021, one paper has been published as the front cover paper of Nanoscale Advances.
  • 10/2021, one paper has been accepted by IEEE Photonics Journal.
  • 10/2021, one paper has been accepted by Optica.
  • 07/2021, the laser-speckle image captured by me is selected as the Image of the Week by Optics & Photonics News of Optica. [Link 1 Link 2]

  • 03/2020, one paper has been published as the front cover paper of Nano Letters.
  • Recent Projects

  • Computational Imaging Using Spatially Modulated Optical Fields
  • Super-resolution Imaging
  • Papers: Nano Letters | Nanoscale Advances | Advanced Materials

    Video-rate super-resolution imaging through biological tissue can visualize and track biomolecule interplays and transportations inside cellular organisms. In this project, we developed a photon upconversion scheme for wide-field super-resolution imaging through the biological transparent window, featured by near-infrared and low-irradiance nonlinear structured illumination, which is helpful for developing video-rate super-resolution deep imaging methods. Moreover, both the nonlinearity of the emission and the tunability of upconversion nanoparticles (UCNPs) in emission wavelength or lifetime allow us to design more flexible and enhanced super-resolution imaging methods.

  • Single-pixel Imaging
  • Papers: Optica | IEEE Photonics Journal | Journal of Modern Optics | Acta Opt Sinica | Proceedings of SPIE

    Single-pixel imaging produces images without the need for a 2D detector, making use of structured detection or illumination of the object to computationally derive an image. It can offer alternatives to conventional imaging, both for applications in the visible, but also as a low-cost alternative in regimes such as x-ray or infrared. Additionally, single-pixel approaches help to inform high-performance imaging techniques, for example, 3D depth, time-resolved or multispectral imaging, in which CCD based systems would be complicated or expensive to implement. Now we are developing novel compact single-pixel detection systems for imaging through scattering medium and multi-spectral imaging.

    Publications

    I'm interested in devleoping new methods for Super-resolution Imaging | Optics in complex media | Nanophononics | Single-pixel Imaging | Optical Fiber Sensing | Novel Imaging Methods, etc.

    Journal Papers:

        

    1. Multiplexed structured illumination super-resolution imaging with lifetime-engineered upconversion nanoparticles
      B. Liu, J. Liao, Y. Song, C. Chen, L. Ding, J. Zhou, and F. Wang,
      Nanoscale Advances, 4(1), 30-38, 2022. [IF: 4.553, published as the front cover, PDF]

    2. Single-pixel diffuser camera
      B. Liu, F. Wang, C. Chen, and D. McGloin,
      IEEE Photonics Journal, 13(6), 7800205, 2021. [IF: 2.443, PDF]

    3. Self-evolving ghost imaging
      B. Liu, F. Wang, C. Chen, F. Dong, and D. McGloin,
      Optica, 8(10), 1340-1349, 2021. [IF: 11.104, PDF]

    4. Upconversion Nonlinear Structured Illumination Microscopy
      B. Liu, C. Chen, X. Di, J. Liao, S. Wen, Q.P. Su, X. Shan, Z.Q. Xu, L.A. Ju, C. Mi, F. Wang, and D. Jin,
      Nano Letters, 20(7), 4775-4781, 2020. [IF: 11.189, published as the front cover, PDF]

    5. Coloured computational imaging with single-pixel detectors based on a 2D discrete cosine transform
      B. Liu, Z. Yang, X. Liu, and L. Wu,
      Journal of Modern Optics, 64(3), 259-264, 2017. [IF: 1.657, citation: 54, rank 3rd place in most cited papers in 2017 of the journal, PDF]

    6. Influence of turbid media at different locations in computational ghost imaging
      B. Liu, Z. Yang, S. Qu, A. Zhang, and L. Wu,
      Acta Opt Sinica, 36 (10), 1026017, 2016. PDF]

    7. Heterochromatic nonlinear optical responses in upconversion nanoparticles for super-resolution nanoscopy
      C. Chen, B. Liu, Y. Liu, J. Liao, X. Shan, F. Wang and D. Jin,
      Advanced Materials, 33(23), 2008847, 2021. [IF: 30.849, PDF]

    8. Optical Fingerprint Classification of Single Upconversion Nanoparticles by Deep Learning
      J. Liao, J. Zhou, Y. Song, B. Liu, J. Lu, and D. Jin,
      Journal of Physical Chemistry Letters, 12(41), 10242–10248, 2021. [IF: 6.475, PDF]

    9. Preselectable Optical Fingerprints of Heterogeneous Upconversion Nanoparticles
      J. Liao, J. Zhou, Y. Song, B. Liu, Y. Chen, F. Wang, C. Chen, J. Lin, X. Chen, J. Lu, and D. Jin,
      Nano Letters, 21(18), 7659–7668, 2021. [IF: 11.189, Q1 Top, PDF]

    10. Video-rate upconverting display by optimizing lanthanide ions doped upconversion nanoparticles
      L. Gao, X. Shan, X. Xu, Y. Liu, B. Liu, S. Li, S. Wen, C. Ma, D. Jin, and F. Wang,
      Nanoscale, 12(36), 18595–18599, 2020. [IF: 6.895, PDF]

    11. Quantitative lateral flow strip sensor using highly doped upconversion nanoparticles
      H. He, B. Liu, S. Wen, J. Liao, G. Lin, J. Zhou, and D. Jin,
      Analytical Chemistry, 90(21), 12356-12360, 2018. [IF: 6.785, Q1 Top, citation: 60, PDF]

    12. Normalized iterative denoising ghost imaging based on the adaptive threshold
      G. Li, Z. Yang, Y. Zhao, R. Yan, X. Liu, and , B. Liu,
      Laser Physics Letters, 14(2), 025207, 2017. [IF: 2.328, PDF]

    Conference Papers:

    1. Self-optimizing ghost imaging with a genetic algorithm
      B. Liu, X. Shan, J. Zhu, C. Chen, Y. Liu, F. Wang, and D. McGloin,
      14th Pacific Rim Conference on Lasers and Electro-Optics (CLEO PR 2020), Optical Society of America, paper C1G_3, 2020. [PDF]

    2. 0.32 THz dual circularly polarized reflect array
      J. Zhu, D. McGloin, Y. Yang, and B. Liu,
      14th Pacific Rim Conference on Lasers and Electro-Optics (CLEO PR 2020), Optical Society of America, paper C11B_3, 2020. [PDF]

    3. A novel correlation imaging method using a periodic light source array
      B. Liu, Z. Yang, A. Zhang, and L. Wu
      Proceedings of SPIE, 10154, 1015413, 2016. [PDF]

    4. Dual beam optical fiber traps for aerosols with angular deviation
      L. Zhang, K. Cook, A. Szmalenberg, B. Liu, L. Ding, F. Wang, D. McGloin
      Proceedings of SPIE, 12017, Complex Light and Optical Forces XVI, 120170G, 2022. [Link]

    Patent of invention:

    1. Single-optical arm correlation imaging method for compensating atmospheric turbulence
      Z. Yang, B. Liu, et al,
      CN: 106154284B, 2017. [PDF]

    2. Single-pixel rapid active imaging system based on discrete cosine transform
      Z. Yang, B. Liu,
      CN: 104992424B, 2018. [PDF]

    3. Single-pixel imaging system and method based on array light source
      Z. Yang, B. Liu, et al,
      CN: 106019307A, 2016. [PDF]

    4. A polarization-interference-type fully distributed double-parameter optical fiber sensor
      N. Wang, J. Fu, X. Li, B. Liu, et al,
      CN: 203561381U, 2014. [PDF]

    5. A reservation type heat insulated cup
      B. Liu,
      CN 203137917U, 2013. [PDF]

    Conference Presentations

    1. 08/2020, B. Liu, et al. “Self-optimizing ghost imaging with a genetic algorithm”, Conference on Lasers and Electro-Optics/Pacific Rim (CLEO PR), Optical Society of America (OSA). (Oral presentation)
    2. 02/2020, Chen Chaohao, B. Liu, et al. “Multiplexed intermediate states saturation nanoscopy by Fourier spectral fusion”, the 8th International Conference on Nanoscience and Nanotechnology (ICONN 2020), Brisbane, Australia. (Oral presentation)
    3. 02/2020, B. Liu, et al. “Near-infrared nonlinear structured illumination microscopy for in-depth super-resolution imaging”, the 8th International Conference on Nanoscience and Nanotechnology (ICONN 2020), Brisbane, Australia. (Poster presentation)
    4. 01/2020, B. Liu, et al. “Upconversion assisted dual-NIR structured illumination microscopy”, The international Conference on Nanomaterial and Atomaterial Science and Applications (ICNASA 2020), Melbourne, Australia. (Oral presentation)
    5. 08/2020, B. Liu, et al. “A novel correlation imaging method using a periodic light source array”. Advanced Optical Design and Manufacturing Technology and Astronomical Telescopes and Instrumentation. International Society for Optics and Photonics (SPIE). (Poster presentation)
    6. 10/2016, B. Liu, et al. “Self-optimizing ghost imaging with a genetic algorithm”, Conference on Lasers and Electro-Optics/Pacific Rim (CLEO PR), Optical Society of America (OSA). (Oral presentation)
    7. 08/2020, B. Liu, et al. “A double threshold multi-wavelength collated imaging”, Chinese Physical Society Autumn Meeting, Beijing, China. (Poster presentation)

    Services

  • Journal Reviewers of Applied Optics, Optics Express, Frontiers in Chemistry, etc.

  • Welcome to use this website's source code, just add a link back to here.